High-yield synthesis of silicon carbide nanowires by solar and lamp ablation.

Nanotechnology

Centre for Strategic Nano-Fabrication, School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

Published: August 2013

We report a reasonably high yield (~50%) synthesis of silicon carbide (SiC) nanowires from silicon oxides and carbon in vacuum, by novel solar and lamp photothermal ablation methods that obviate the need for catalysis, and allow relatively short reaction times (~10 min) in a nominally one-step process that does not involve toxic reagents. The one-dimensional core/shell β-SiC/SiOx nanostructures-characterized by SEM, TEM, HRTEM, SAED, XRD and EDS-are typically several microns long, with core and outer diameters of about 10 and 30 nm, respectively. HRTEM revealed additional distinctive nanoscale structures that also shed light on the formation pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/33/335603DOI Listing

Publication Analysis

Top Keywords

synthesis silicon
8
silicon carbide
8
solar lamp
8
high-yield synthesis
4
carbide nanowires
4
nanowires solar
4
lamp ablation
4
ablation report
4
report reasonably
4
reasonably high
4

Similar Publications

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.

View Article and Find Full Text PDF

A low-temperature ionic liquid system for topochemical synthesis of Si nanospheres for high-performance lithium-ion batteries.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Nutritional Dermatology: Optimizing Dietary Choices for Skin Health.

Nutrients

December 2024

Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA.

Background/objectives: Youthful, smooth skin is highly desired in modern society. Individuals invest in cosmetics, plastic surgeons, and dermatologists in pursuit of perfect skin. However, many do not seek out dietary changes to improve skin health.

View Article and Find Full Text PDF

This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!