L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

Antonie Van Leeuwenhoek

School of Mathematical and Natural Sciences, Arizona State University at the West Campus, MC 2352, P.O. Box 37100, Phoenix, AZ, 85069-7100, USA,

Published: November 2013

The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-013-9973-6DOI Listing

Publication Analysis

Top Keywords

citric acid
12
acid cycle
12
activity
11
l-malate dehydrogenase
8
incomplete citric
8
nitrosomonas europaea
8
mdh activity
8
direction activity
8
increased activity
8
times higher
8

Similar Publications

Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Introduction: Peels are an abundant but still underutilized waste product in the Citrus fruit industry. They contain coumarins with antiadipogenic potential that could be promising targets in new valorization strategies for Citrus peels.

Objectives: In this study, these coumarins, that is, citropten, bergamottin, and 5-geranyloxy-7-methoxycoumarin (5G7MC), were investigated in Citrus limon peels of different commercial varieties by HPLC-DAD after extraction with ethanol and choline chloride-based natural deep eutectic solvents (NADES) as alternative extraction agents in green natural product extraction.

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

Role of zinc homeostasis in the prevention of prostate diseases.

J Trace Elem Med Biol

January 2025

Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei General Hospital, Shijiazhuang, Hebei 050051, China. Electronic address:

The prostate gland is the largest accessory sex gland in the male reproductive system, and is recognized for its elevated zinc concentration. Recently, the incidence of prostate diseases has increased, posing a significant threat to the health of men. Increasing evidence suggests that maintaining normal prostate function requires proper zinc homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!