Modification of charge transfer in a two-dimensional donor/acceptor framework by the insertion of another donor-type molecule into electronegative interlayer pockets.

Dalton Trans

Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Published: December 2013

Pyrene-intercalated layered compounds, [{Ru2(O2CCF3)4}2(TCNQR(x))]·2(pyrene) (TCNQR(x) = 7,7,8,8-tetracyano-p-quinodimethane derivatives; R(x) = H4 and F4), were synthesized. Pyrene prohibits intralayer electron transfer of [Ru2(II,II)] → TCNQR(x), even in the compound with R(x) = F4, from occurring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt51271aDOI Listing

Publication Analysis

Top Keywords

modification charge
4
charge transfer
4
transfer two-dimensional
4
two-dimensional donor/acceptor
4
donor/acceptor framework
4
framework insertion
4
insertion donor-type
4
donor-type molecule
4
molecule electronegative
4
electronegative interlayer
4

Similar Publications

Awakening n-π* electron transition in structurally distorted g-CN nanosheets via hexamethylenetetramine-involved supercritical CO treatment towards efficient photocatalytic H production.

J Colloid Interface Sci

January 2025

International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.

Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.

View Article and Find Full Text PDF

Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength.

Food Chem

January 2025

College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:

The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Liposomal Formulations: A Recent Update.

Pharmaceutics

December 2024

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.

Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!