We propose a technique for transferring the multiplet spin polarization (CIDNP or PHIP, or one created by any other method), which is the mutual entanglement of spins, into net hyper-polarization with respect to the direction of a high magnetic field by slowly (adiabatically) switching-off a strong external RF-field with a specially selected frequency. The net hyper-polarized molecules can then be used in NMR spectroscopy or imaging for strong signal enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp52061g | DOI Listing |
Adv Sci (Weinh)
December 2024
RIKEN Center for Advanced Photonics, RIKEN, 519-1399 Aramaki-Aoba, Sendai, Miyagi, 980-0845, Japan.
This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.
View Article and Find Full Text PDFAdv Mater
December 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
By manipulating their asymmetric electronic spin states, the unique electronic structures and unsaturated coordination environments of single atoms can be effectively harnessed to control their magnetic properties. In this research, the first investigation is presented into the regulation of magnetic properties through the electronic spin states of single atoms. Magnetic single-atom one-dimensional materials, M-N-C/ZrO (M = Fe, Co, Ni), with varying electronic spin states, are design and synthesize based on the electronic orbital structure model.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
Electron spin resonance (ESR) is a powerful tool for characterizing and manipulating spin systems, but commercial ESR spectrometers can be inflexible and designed to work in narrow frequency bands. This work presents a spectrometer built from off-the-shelf parts that, when coupled with easy-to-design resonators, enables ESR over a broad frequency range, including at frequencies outside the standard bands. It can operate at either a single frequency or at two frequencies simultaneously.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!