The crystal orientation dependence of GaN excitons was investigated via the photoluminescence (PL) technique. The PL emissions at a temperature of 10 K were obtained from two experimental configurations where the emission K vector (the propagation vector) was either parallel (K ∥ c) or perpendicular (K ∥ c) to the crystal c-axis. Longitudinal, transverse and donor-bound excitons were observed in the two configurations. However, the longitudinal excitons converged onto the transverse free exciton Γ5 in the K⊥c emission. This behavior was discussed in terms of electron screening due to the scattering of electrons moving perpendicular to charged dislocation lines. Additionally, the thermal activation energy of the longitudinal excitons was calculated from the temperature dependent PL measurements collected from the K ∥ c emission, and was found to be 5 to 6 times as high as the binding energy of the free excitons. This high energy was interpreted tentatively in view of the creation of polaritons in strong exciton-photon coupling regimes. These findings present fundamental concepts for applications such as vertical cavity surface-emitting lasers (VCSELs) and polariton lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/25/33/335803 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.
This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Materials Science, National University of Tainan, Tainan 700301, Taiwan.
We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal India-741246
Red emission in crystals has been observed with an ultra-small-single-benzenic -fluorophore () with a molecular weight (MW) of only 197 Da, bettering the literature report of fluorophores with the lowest MW = 252 Da. Supramolecular extensive hydrogen-bonding and J-aggregate type centrosymmetric discrete-dimers or a 1D chain of s led to red emission ( = 610-636 nm) in crystals. Unlike in the solution phase showing one absorption band, in thin films and in crystals the transition from the S state to both the S state and S state becomes feasible.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan.
Metal halide perovskite materials (MHPs) are promising for several applications due to their exceptional properties. Understanding excitonic properties is essential for exploiting these materials. For this purpose, we focus on CsPbBr3 single crystals, which have higher crystal quality, are more stable, and have no Rashba effect at low temperatures compared to other 3D MHPs.
View Article and Find Full Text PDFNano Lett
November 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
Observation and understanding of fine-structure splitting of bright excitons in lead halide perovskite quantum dots (QDs) are crucial to their emerging applications in quantum light sources and exciton coherence manipulation. Recent studies demonstrate that ensemble-level polarization-resolved transient absorption spectroscopy can reveal the quantum beats arising from the coherence between two fine-structure levels. Here we report the observation of an extra fine-structure quantum coherence hidden in previous studies by using cryo-magnetic quantum beat spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!