We have introduced a facile strategy to fabricate sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium-ion batteries applying rolled-up nanotechnology with the use of carbon black as intersheet spacer. By employing a direct self-rolling and compressing approach, a much higher effective volume efficiency is achieved as compared to rolled-up hollow tubes. Benefiting from the nanogaps formed between each neighboring sheet, electron transport and ion diffusion are facilitated and SnO2/Cu nanosheet overlapping is prevented. As a result, the sandwich-stacked SnO2/Cu hybrid nanosheets exhibit a high reversible capacity of 764 mAh g(-1) at 100 mA g(-1) and a stable cycling performance of ~75% capacity retention at 200 mA g(-1) after 150 cycles, as well as a superior rate capability of ~470 mAh g(-1) at 1 A g(-1). This synthesis approach presents a promising route to design multichannel anodes for high performance Li-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn402164q | DOI Listing |
ACS Nano
August 2013
Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, Dresden 01069, Germany.
We have introduced a facile strategy to fabricate sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium-ion batteries applying rolled-up nanotechnology with the use of carbon black as intersheet spacer. By employing a direct self-rolling and compressing approach, a much higher effective volume efficiency is achieved as compared to rolled-up hollow tubes. Benefiting from the nanogaps formed between each neighboring sheet, electron transport and ion diffusion are facilitated and SnO2/Cu nanosheet overlapping is prevented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!