E. coli DsbA is an intensively studied enzyme of the thioredoxin superfamily of thiol-disulfide oxidoreductases. DsbA catalyzes the disulfide bond formation and folding of proteins in the bacterial periplasm. DsbA and its mutants have highlighted the strong and puzzling influence of the -C-X1-X2-C- active site variants, found across the thioredoxin superfamily, on the ionization and redox properties of this site. However, the interpretation of these observations remains wanting, largely due to a dearth of structural information. Here, molecular dynamics simulations are used to provide extensive information on the structure and dynamics of reduced -C30-X31-X32-C33- motifs in wild type DsbA and 13 of its mutants. These simulations are combined with calculations of the pK of H32 and of the very low pK of the catalytic cysteine C30. In wild type DsbA, the titrations of C30 and H32 are shown to be coupled; the protonation states and dynamics of H32 are examined. The thiolate of C30 is stabilized by hydrogen bonds with the protein. Modulation of these hydrogen bonds by alteration of residue X32 has the greatest impact on the pK of C30, which rationalizes its higher pK in thioredoxin and tryparedoxin. Because of structural constrains, residue X31 has only an indirect and weak influence on the pK of C30. The dynamics of C30 is clearly related to its stabilizing interactions and pK value. Although relatively small differences between pKs were not reproduced in the calculations, the major trends are explained, adding new insights to our understanding of enzymes in this family.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi400500eDOI Listing

Publication Analysis

Top Keywords

thioredoxin superfamily
12
dsba mutants
12
active site
8
coli dsba
8
wild type
8
type dsba
8
hydrogen bonds
8
dsba
6
c30
6
understanding -c-x1-x2-c-
4

Similar Publications

Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.

View Article and Find Full Text PDF

Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of DsbA1.

Comput Struct Biotechnol J

December 2024

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.

In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.

View Article and Find Full Text PDF

Insights into the functional properties of thioredoxin domain-containing protein 12 (TXNDC12): Antioxidant activity, immunological expression, and wound-healing effect in yellowtail clownfish (Amphiprion clarkii).

Fish Shellfish Immunol

November 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.

View Article and Find Full Text PDF

Protein disulfide isomerase PDI8 is indispensable for parasite growth and associated with secretory protein processing in .

mBio

September 2024

Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China.

Article Synopsis
  • Protein disulfide isomerase (PDI) is crucial for oxidative protein folding in the endoplasmic reticulum, but its specific roles in parasite growth are not well understood.
  • The study focused on two PDI proteins, TgPDI8 and TgPDI6; TgPDI8 knockdown severely hindered parasite proliferation and invasion, while TgPDI6 was not essential.
  • Findings revealed that TgPDI8's enzymatic activity relies on critical cysteines and that its absence led to decreased expression of secretory proteins, providing insights for future drug development against apicomplexan parasites.
View Article and Find Full Text PDF

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!