Contact-dependent growth inhibition (CDI) is a phenomenon in which Gram-negative bacteria use the toxic C-terminus of a large surface-exposed exoprotein to inhibit the growth of susceptible bacteria upon cell-cell contact. Little is known about when and where bacteria express the genes encoding CDI system proteins and how these systems contribute to the survival of bacteria in their natural niche. Here we establish that, in addition to mediating interbacterial competition, the Burkholderia thailandensis CDI system exoprotein BcpA is required for biofilm development. We also provide evidence that the catalytic activity of BcpA and extracellular DNA are required for the characteristic biofilm pillars to form. We show using a bcpA-gfp fusion that within the biofilm, expression of the CDI system-encoding genes is below the limit of detection for the majority of bacteria and only a subset of cells express the genes strongly at any given time. Analysis of a strain constitutively expressing the genes indicates that native expression is critical for biofilm architecture. Although CDI systems have so far only been demonstrated to be involved in interbacterial competition, constitutive production of the system's immunity protein in the entire bacterial population did not alter biofilm formation, indicating a CDI-independent role for BcpA in this process. We propose, therefore, that bacteria may use CDI proteins in cooperative behaviours, like building biofilm communities, and in competitive behaviours that prevent non-self bacteria from entering the community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786370 | PMC |
http://dx.doi.org/10.1111/mmi.12339 | DOI Listing |
Braz J Microbiol
January 2025
ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.
View Article and Find Full Text PDFBackground: Candidiasis can be present as a cutaneous, mucosal, or deep-seated organ infection, which is caused by more than 20 types of Candida spp., with C. albicans being the most common.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.
Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan.
Indoxyl sulfate (IS) has been implicated in the pathogenesis of cardiovascular diseases. IS is converted from indole, a metabolite of dietary tryptophan through the action of gut microbial tryptophanase, by two hepatic enzymes: CYP2E1 and SULT1A1. We hypothesized that the effect of tryptophan intake on IS production might differ from person to person.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!