Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Performance of likelihood ratio (LR) methods for evidence evaluation has been represented in the past using, for example, Tippett plots. We propose empirical cross-entropy (ECE) plots as a metric of accuracy based on the statistical theory of proper scoring rules, interpretable as information given by the evidence according to information theory, which quantify calibration of LR values. We present results with a case example using a glass database from real casework, comparing performance with both Tippett and ECE plots. We conclude that ECE plots allow clearer comparisons of LR methods than previous metrics, allowing a theoretical criterion to determine whether a given method should be used for evidence evaluation or not, which is an improvement over Tippett plots. A set of recommendations for the use of the proposed methodology by practitioners is also given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.12233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!