The majority of deaths associated with solid tumors are caused by tumor metastasis. To prevent metastasis, it is vital to understand its detailed process. In hematogenous metastasis of bladder cancer, some cancer cells disseminating into blood circulation extravasate into the lung tissues to form metastases. To study the molecular basis of the lung metastasis of bladder cancer, we employed an in vivo selection system that mimics hematogenous metastasis of bladder cancer on a low-metastatic bladder cancer cell line (KK-47). We have successfully isolated a high-metastatic bladder cancer subline, KK-47HM4, from KK-47 cells. We characterized KK-47HM4 in in vitro experimental systems. No significant difference in growth rate and susceptibility to NK cell attack between KK-47 and KK-47HM4 cells was observed. However, KK-47HM4 exhibited the higher capacities of Matrigel Matrix invasion and transendothelial invasion than KK-47. These results suggest that the extravasation of KK-47HM4 cells was enhanced among the multiple steps of the lung metastasis of bladder cancer. Our cDNA microarray analysis identified 67 genes whose expression was up- or downregulated in KK-47HM4 cells compared with KK-47 cells. This analysis data implied that one possible cause for enhanced extravasation of KK-47HM4 is its higher adhesion to extracellular matrix proteins. KK-47HM4 is the first bladder cancer subline with enhanced extravasation potential using the in vivo selection system. The information provided by our cDNA microarray analysis using KK-47HM4 will be useful for further investigation into the molecular basis of extravasation of cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096504013x13639794277644DOI Listing

Publication Analysis

Top Keywords

bladder cancer
32
metastasis bladder
16
vivo selection
12
kk-47hm4 cells
12
cancer
10
kk-47hm4
9
bladder
8
cancer cell
8
hematogenous metastasis
8
cancer cells
8

Similar Publications

Urinary bladder cancer is a global disease that poses medical and socioeconomic challenges to patients and healthcare systems. Predicting detrusor invasiveness and pathological grade of bladder cancer by the radiologist is imperative for informed decision-making and effective patient-tailored therapy. Cystoscopy and TURBT are the current gold standard for preoperative histologic diagnosis and local pathological staging but are compromised by their intrusiveness, under-sampling, and staging inaccuracies.

View Article and Find Full Text PDF

Purpose: CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges.

View Article and Find Full Text PDF

Objectives: To evaluate the role of the TYTOCARE™ telemedicine programme for home telemonitoring during the early postoperative period following radical cystectomy (RC) in a prospective single-centre study.

Materials And Methods: The study included patients aged <80 years with internet access who underwent RC at our institution between March 2021 and August 2023. Upon discharge, patients were monitored at home using the TYTOCARE™ telemedicine system.

View Article and Find Full Text PDF

PICC management for bladder tumor patient with toxic epidermal necrolysis: A crisis intervention case report.

J Vasc Access

December 2024

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Crisis intervention is crucial in managing acute medical crises to improve outcomes. Toxic Epidermal Necrolysis (TEN), a severe skin reaction often triggered by drug exposure, poses challenges, especially in chemotherapy patients. Evidence on nursing care for TEN patients with Peripherally Inserted Central Catheter (PICC) retention during chemotherapy is limited.

View Article and Find Full Text PDF

Bladder cancer, more prevalent in men, has high recurrence rates in non-muscle-invasive forms and is highly lethal upon metastasis in muscle-invasive cases. Transient receptor potential canonical channels (TRPCs), specifically TRPC3, play a role in calcium signaling, influencing cancer cell behavior. This study examines the effects of Pyr3, a TRPC3 inhibitor, and TRPC3 knockdown on both muscle-invasive (T24) and non-muscle-invasive (RT4) bladder cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!