Microbial community analyses in biogas reactors by molecular methods.

Acta Chim Slov

University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, SI-1230 Domzale.

Published: August 2013

Successful biogas production is based on stable or adaptable microbial community structure and activity which depends on type of substrate used and several physico-chemical conditions in the bioreactor. Monitoring those and the dynamics of microbiota is important for planning and optimizing the biogas process, avoiding critical points and reaching the maximum methane yield. Methanogens are extremely difficult to study with culture-based methods. Molecular methods for microbial community structure analysis in biogas reactors, which offer qualitative and quantitative information on bacterial and archaeal species and their microbial community changes, and causes for process instability are surveyed in this review. For comparative studies semi-quantitative, rapid and cheap techniques like T-RFLP, DGGE and TGGE are used. More laborious and expensive techniques with high-throughput like semi-quantitative FISH and DNA microarrays and also quantitative techniques like qPCR and sequencing are used for phylogenetic analysis. Technique type adequacy for certain study depends on what information is needed and on several advantages and disadvantages every technique possesses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

microbial community
16
biogas reactors
8
molecular methods
8
community structure
8
microbial
4
community analyses
4
biogas
4
analyses biogas
4
reactors molecular
4
methods successful
4

Similar Publications

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Microbial competition for iron determines its availability to the ferrous wheel.

ISME J

January 2025

Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.

Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!