Contamination of soil and groundwater by petroleum-based products is an extremely widespread and important environmental problem. Here we have tested a simple optical approach for detecting and identifying such industrial contaminants in soil samples, using a set of fluorescent DNA-based chemosensors in pattern-based sensing. We used a set of diverse industrial volatile chemicals to screen and identify a set of five short oligomeric DNA fluorophores on PEG-polystyrene microbeads that could differentiate the entire set after exposure to their vapors in air. We then tested this set of five fluorescent chemosensor compounds for their ability to respond with fluorescence changes when exposed to headgas over soil samples contaminated with one of ten different samples of crude oil, petroleum distillates, fuels, lubricants and additives. Statistical analysis of the quantitative fluorescence change data (as Δ(R,G,B) emission intensities) revealed that these five chemosensors on beads could differentiate all ten product mixtures at 1000 ppm in soil within 30 minutes. Tests of sensitivity with three of the contaminant mixtures showed that they could be detected and differentiated in amounts at least as low as one part per million in soil. The results establish that DNA-polyfluorophores may have practical utility in monitoring the extent and identity of environmental spills and leaks, while they occur and during their remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713804PMC
http://dx.doi.org/10.1039/C3SC50985KDOI Listing

Publication Analysis

Top Keywords

soil samples
8
set fluorescent
8
soil
6
set
5
dna-polyfluorophore chemosensors
4
chemosensors environmental
4
environmental remediation
4
remediation vapor-phase
4
vapor-phase identification
4
identification petroleum
4

Similar Publications

In order to understand the spatial distribution, influencing factors, pollution level and sources of heavy metals in black soil profiles in Northeast China, black soil profile samples were collected from five sampling points in Haicheng City, Liaoning Province, with the deepest profile depth of 50m. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in soil at different depths were analyzed, and the distribution characteristics and influencing factors of heavy metals in black soil profiles were analyzed. The pollution level of heavy metals in soil was evaluated based on the geo-accumulation index method and enrichment factor method, and the sources of heavy metals in soil were analyzed based on principal component analysis.

View Article and Find Full Text PDF

Carbon stock quantification and climate mitigation potential of a tropical moist forest in Ethiopia.

PLoS One

January 2025

Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States of America.

The significance of forests in absorbing and storing carbon plays a crucial role in international greenhouse gas policies outlined by the United Nations Framework Convention for Climate Change (UNFCC). This study was conducted in a typical tropical moist forest of Ethiopia to assess its carbon stock, a critical issue in climate policy. The study domain was divided into six strata using elevation criteria.

View Article and Find Full Text PDF

Genetic diversity and environmental adaptation in Ethiopian tef.

G3 (Bethesda)

January 2025

Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Orphan crops serve as essential resources for both nutrition and income in local communities and offer potential solutions to the challenges of food security and climate vulnerability. Tef [Eragrostis tef (Zucc.)], a small-grained allotetraploid, C4 cereal mainly cultivated in Ethiopia, stands out for its adaptability to marginal conditions and high nutritional value, which holds both local and global promise.

View Article and Find Full Text PDF

Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.

View Article and Find Full Text PDF

Heavy metal pollution in agricultural soils poses a serious threat to food security. Therefore, it is crucial to conduct risk assessments and issue early warnings about high levels of metal contamination for the sustained prosperity of agriculture. To assess the risks, identify the sources, quantify the amounts, and determine the extent of pollution from seven heavy metals, as well as to provide early warnings, 78 soil samples were collected from farmed lands in the Songnen Plain of Jilin Province.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!