The present study evaluates the impact of immune cell populations on metastatic development in a model of spontaneous melanoma [mice expressing the human RET oncogene under the control of the metallothionein promoter (MT/ret mice)]. In this model, cancer cells disseminate early but remain dormant for several weeks. Then, MT/ret mice develop cutaneous metastases and, finally, distant metastases. A total of 35% of MT/ret mice develop a vitiligo, a skin depigmentation attributable to the lysis of normal melanocytes, associated with a delay in tumor progression. Here, we find that regulatory CD4(+) T cells accumulate in the skin, the spleen, and tumor-draining lymph nodes of MT/ret mice not developing vitiligo. Regulatory T-cell depletion and IL-10 neutralization led to increased occurrence of vitiligo that correlated with a decreased incidence of melanoma metastases. In contrast, inflammatory monocytes/dendritic cells accumulate in the skin of MT/ret mice with active vitiligo. Moreover, they inhibit tumor cell proliferation in vitro through a reactive oxygen species-dependent mechanism, and both their depletion and reactive oxygen species neutralization in vivo increased tumor cell dissemination. Altogether, our data suggest that regulatory CD4(+) T cells favor tumor progression, in part, by inhibiting recruitment and/or differentiation of inflammatory monocytes in the skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740849PMC
http://dx.doi.org/10.1073/pnas.1300314110DOI Listing

Publication Analysis

Top Keywords

mt/ret mice
16
regulatory cd4+
12
cd4+ cells
12
inflammatory monocytes
8
mice develop
8
tumor progression
8
cells accumulate
8
accumulate skin
8
tumor cell
8
reactive oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!