The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762668 | PMC |
http://dx.doi.org/10.1104/pp.113.222653 | DOI Listing |
Plant Physiol Biochem
December 2024
Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes.
View Article and Find Full Text PDFInt J Phytoremediation
November 2024
Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India.
Food Funct
December 2024
U.S. Department of Agriculture, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA.
Black rice bran, a waste product from the commercial milling of black rice that removes the bran and germ leaving the starchy endosperm, contains bioactive anthocyanin, phenolic, and phytosteroid compounds that may have health benefits. This study determined the effect of a polysaccharide-rich bioprocessed (fermented) black rice bran and a green tea extract individually and in combination on weight loss in orally fed mice on a high-fat diet and on concurrent changes in blood glucose and insulin as well as in cholesterol, triglyceride, and high-density and low-density lipoproteins (HDL and LDL). At the end of the eight-week feeding study, the combination diet resulted in a 67% lower weight gain than mice on a high-fat diet alone, a greater effect than that of bioprocessed black rice bran or green tea extract individually.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
RNA extraction is a critical step in gene expression analysis. While numerous RNA extraction kits are commercially available, most kits cannot be utilized for RNA extraction from rice endosperm that contains abundant starch. Here, I describe a three-step RNA extraction from rice starchy endosperm.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!