Eupatilin, a major flavonoid of plants in the genus Artemisia, has been shown to exhibit anti-inflammatory, anti-oxidative, and anti-tumor effects. However, the potential anti-atherogenic effects of eupatilin and any underlying mechanisms have not been investigated. In the present study, we sought to determine the effects of eupatilin on phenotypes induced by the growth factor PDGF-BB in human aortic smooth muscle cells. Here we show that aortic sprouting as well as PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells were significantly inhibited by eupatilin. We found that eupatilin inhibited PI3K activity, causing a direct effect on phosphorylation of the downstream kinases Akt and p70S6K. In parallel, eupatilin also inhibited the phosphorylation of MKK3/6-p38 MAPK and the MKK4-JNK pathway. Moreover we found that eupatilin exhibited stronger inhibition effects on PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells than PI3K, p38 MAPK, and JNK pathway inhibitors. Taken together, our results indicate that eupatilin is a potent anti-atherogenic agent that inhibits PDGF-BB-induced proliferation and migration in HASMCs as well as aortic sprouting, which is likely mediated through the attenuation of PI3K, MKK3/6, and MKK4 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0033-1350621DOI Listing

Publication Analysis

Top Keywords

aortic smooth
16
smooth muscle
16
proliferation migration
16
human aortic
12
muscle cells
12
pdgf-bb-induced proliferation
12
eupatilin
9
eupatilin major
8
major flavonoid
8
pi3k mkk3/6
8

Similar Publications

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Sinomenine attenuates uremia vascular calcification by miR-143-5p.

Sci Rep

January 2025

Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China.

Vascular calcification is considered to be a killer of the cardiovascular system, involved inflammation and immunity. There is no approved therapeutic strategy for the prevention of vascular calcification. Sinomenine exhibited anti-inflammatory and immunosuppressive effects.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!