We investigated the stability of light transmission through Intralipid-based optical phantoms in the wavelength range of 400-950 nm at temperatures between 35 and 70 °C. Optical phantoms are materials commonly used to simulate the light scattering and absorption properties of biological materials. These simulations require the phantom to be optically stable. We demonstrate that the scattering properties of Intralipid remain stable at higher temperatures, varying less than 0.5%. We also present results that show this is not the case for absorption below 700 nm at 35 and 70 °C, with greater instability at 70 °C. For example, at 500 nm, the light intensity transmitted through 15 mm of Intralipid dropped 39% over 12 h. We demonstrate that oxidation of fatty acids in Intralipid could account for this effect and show, by flushing the system continuously with nitrogen gas, the instability is reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/12-06971a | DOI Listing |
J Biophotonics
January 2025
Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.
View Article and Find Full Text PDFJ Radiol Prot
January 2025
Radiation Protection Dosimetry (6.3), Physikalisch-Technische Bundesanstalt, Braunschweig, NDS, GERMANY.
With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm, Hp(3), is the measurement method for monitoring the dose to the lens of the eye. Traditional dosimetry methods primarily address lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating the rotation of the phantom during type testing around the vertical axis.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Department of Robotics, University of Michigan, USA.
Conventional scanned optical coherence tomography (OCT) suffers from the frame rate/resolution tradeoff, whereby increasing image resolution leads to decreases in the maximum achievable frame rate. To overcome this limitation, we propose two variants of machine learning (ML)-based adaptive scanning approaches: one using a ConvLSTM-based sequential prediction model and another leveraging a temporal attention unit (TAU)-based parallel prediction model for scene dynamics prediction. These models are integrated with a kinodynamic path planner based on the clustered traveling salesperson problem to create two versions of ML-based adaptive scanning pipelines.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.
View Article and Find Full Text PDFOptical fibers are between the most common implantable devices for delivering light in the nervous system for optogenetics and infrared neural stimulation applications. Tapered optical fibers, in particular, can offer homogeneous light delivery to a large volume and spatially resolved illumination compared to standard flat-cleaved fibers while being minimally invasive. However, the use of tapers for neural applications has up to now been limited to silica optical fibers, whose large Young's modulus can cause detrimental foreign body response in chronic settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!