Hydrophobic properties were conferred to a high-lignin-content Kraft pulp by a laccase-catalysed treatment in the presence of lauryl gallate (LG). The treatment resulted in a two-fold increase in contact angle and conferred water absorption resistance to the pulp. Kappa number was increased, indicating that some phenolic compounds were incorporated in the pulp. A control treatment with LG alone did not affect water absorption, demonstrating that laccase was essential to attain these new properties. The loss of hydrophobicity after an acetone Soxhlet extraction highlighted that adsorbed acetone-soluble compounds played a key role in the properties. GC-FID and HPSEC-UV analysis of the acetone extract indicated the formation of dodecanol and different phenolic oligomers. SEM images showed the treatment-induced changes in the fibre network. Additional experiments with various reaction times and reactant concentrations highlighted the role of LG oxidation products in the introduction of absorption resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2013.07.014 | DOI Listing |
Nanotechnology
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, INDIA.
This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFLangmuir
January 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.
Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India.
Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Laboratorio de Investigación, Desarrollo y Evaluación de Alimentos (LIDEA), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina.
Background: The antioxidant capacity of anthocyanins (AC) rapidly degrades during storage, highlighting the need for their stabilization. The conformational properties and high proline content of sodium caseinate (NaCAS), combined with the formation of NaCAS microgels in the presence of tara gum (TG) and acid gelation, suggest its potential as an effective stabilizing or encapsulating agent of AC.
Results: Spectrofluorimetric results suggest the formation of a complex between NaCAS and AC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!