Degradation of VX surrogate profenofos on surfaces via in situ photo-oxidation.

Environ Sci Technol

Technion Center of Excellence in Exposure Science and Environmental Health (TCEEH), Technion-Israel Institute of Technology, Haifa, Israel.

Published: August 2013

Surface degradation of profenofos (PF), a VX nerve gas surrogate, was investigated using in situ photo-oxidation that combines simple instrumentation and ambient gases (O2 and H2O) as a function of exposure conditions ([O3], [OH], UV light λ = 185 and/or 254 nm, relative humidity) and PF film surface density (0.38-3.8 g m(-2)). PF film 0.38 g m(-2) fully degraded after 60 min of exposure to both 254 and 185 nm UV light in humidified air and high ozone. The observed pseudo-first-order surface reaction rate constant (kobs = 0.075 ± 0.004 min(-1)) and calculated hydroxyl concentration near the film surface ([OH]g = (9 ± 2) × 10(7) molecules cm(-3)) were used to determine the second-order rate constant for heterogeneous reaction of PF and OH (k(OH)PF = (5 ± 1) × 10(-12) cm(3) molec(-1) s(-1)). PF degradation in the absence of 185 nm light or without humidity was lower (70% or 90% degradation, respectively). With denser PF films ranging from 2.3 to 3.8 g m(-2), only 80% degradation was achieved until the PF droplet was redissolved in acetonitrile which allowed >95% PF degradation. Surface product analysis indicated limited formation of the nontoxic phosphoric acid ester but the formation of nonvolatile chemicals with increased hydrophilicity and addition of OH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es4016537DOI Listing

Publication Analysis

Top Keywords

situ photo-oxidation
8
film surface
8
185 light
8
rate constant
8
degradation
6
surface
5
degradation surrogate
4
surrogate profenofos
4
profenofos surfaces
4
surfaces situ
4

Similar Publications

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films.

View Article and Find Full Text PDF

The photocatalytic conversion of biomass-based platform molecules, such as 5-hydroxymethylfurfural (HMF), holds significant importance for the utilization of biomass resources. This study focuses on the unique ability of atomically bridged indium (In) atoms that encourages inactive SnS surface and steer the selective HMF oxidation process under solar light. Experimental results suggest that In confined SnS structure provides not only favorable sites and electronic structures for the synergistic activation of HMF/O but also benefit in charge carrier dynamics, thus influencing the overall activity and selectivity of the SnS catalyst.

View Article and Find Full Text PDF
Article Synopsis
  • The structure of DNA, particularly its double-helix formation, is crucial for understanding how genetic information is stored, copied, and organized in the nucleus of mammalian cells.
  • ChromEMT is a new method developed to visualize and reconstruct the 3D organization and interactions of DNA and nucleosomes, enabling researchers to study chromatin structures and their roles in DNA replication, gene expression, and cell fate.
  • The ChromEMT process involves a detailed protocol that includes staining DNA with a fluorescent dye, photo-oxidation, and sample preparation, requiring around 9 days and expertise in electron microscopy techniques.
View Article and Find Full Text PDF

Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!