Cell encapsulation provides a means to transplant therapeutic cells for a variety of diseases including diabetes. However, due to the large numbers of cells, approximately on the order of a billion, that need to be transplanted for human diabetes therapy, adequate mass transport of nutrients such as oxygen presents a major challenge. Proof-of-concept for the design of a bioartificial endocrine pancreas (BAEP) that is optimized to minimize hypoxia in a scalable and precise architecture is demonstrated using a combination of simulations and experiments. The BAEP is composed of an array of porous, lithographically patterned polyhedral capsules arrayed on a rolled-up alginate sheet. All the important structural variables such as the capsule dimensions, pore characteristics, and spacing can be precisely engineered and tuned. Further, all cells are encapsulated within a single device with a volume not much greater than the total volume of the encapsulated cells, and no cell within the device is located more than 200 μm from the surrounding medium that facilitates efficient mass transport with the surroundings. Compared with gel-based encapsulation methods, our approach offers unprecedented precision and tunability of structural parameters as well as the volume of the encapsulated cells and consequently the amount of secreted insulin. Our work highlights the utility of lithography and self-assembly in the fabrication of micro- and nanostructured three-dimensional structures that simulate the function of natural endocrine organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/aor.12131 | DOI Listing |
Macromol Rapid Commun
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Hexaarylbiimidazole (HABI) molecules have awakened a broad interest in photo-processing, super-resolution imaging, photoinduced self-healing materials, and photomechanical hydrogels due to their excellent photosensitivity and photo-induced cleavage properties. In this work, a novel photoswitchable branched polyurethanes (BPU), which are synthesized by copolymerizing HABI with glycerol, isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), is designed. 7-Diethylamino-4-methylcoumarin (DMCO) is introduced as a radical quencher, which can not only avoid the hydroxyl interfering from conventional radical scavengers during the polymerization process but also promote efficient quenching of TPIR radicals.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Samara National Research University, 443086 Samara, Russia.
Adv Mater
January 2025
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China.
Lithography is critical in micro- and nanofabrication processes, enabling the development of integrated circuits, semiconductor devices, and various advanced electronic and photonic systems. However, there are challenges related to sustainability, efficiency, and yield, as well as compatibility with transient electronics. This work introduces a sustainable lithography paradigm employing mechanically peelable resists compatible with existing cleanroom processes.
View Article and Find Full Text PDFBiofabrication
December 2024
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, People's Republic of China.
Acoustic bioassembly is recently regarded as a highly efficient biofabrication tool to generate functional tissue mimics. Despite their capacity of directly patterning live cells with close intercellular proximity, most acoustic bioassembly techniques are currently limited to generate some specific simple types of periodic and symmetric patterns, which represents an urgent challenge to emulate geometrically complex cytoarchitecture in human tissue. To address this challenge, we herein demonstrate a soft-lithographically defined acoustic bioassembly (SLAB) technique that enables to assemble live cells into geometrically defined arbitrary multicellular structures.
View Article and Find Full Text PDFDistortion is a common issue in projection lens imaging, leading to image distortion and edge deformation, which significantly affects the quality of the projected pattern. Conventional methods for distortion correction are typically constrained by the precision of the projection pixel size. In this work, we propose an ultra-pixel precision correction method for projection distortion in projection lithography systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!