Theoretical investigations are carried out on the interaction between fluorinated dimethyl ethers (FDME, nF = 0-4) and the Cl atom. Short intermolecular O···Cl distances between 2.401 and 2.938 Å reveal the formation of a new class of complexes. The interaction energies calculated with the G2(MP2) method range between -9.1 (nF = 4) and -26.0 (nF = 0) kJ/mol. The charge transfer occurring from the ethers to atomic Cl is moderate and ranges between 0.012 e (nF = 4) to 0.188 e (nF = 0). The binding energies are linearly related to the proton affinity, to the charge transfer (CT) occurring in the molecular system and inversely proportional to the ionization potential and electron affinity (IP-EA) values. The CT and spin density data indicate substantial two-center-three-electron O···Cl interaction in CH3OCH3···Cl and CH3OCH2F···Cl systems, whereas for highly fluorinated ethers the interaction is predominantly electrostatic in nature. The formation of the complex results in a contraction of the CH bonds, especially in the gauche position. The blue shifts of the C-H stretching vibrations calculated in the partially deuterated isotopomers range between 2 and 54 cm(-1) and are correlated to the variation of the CH distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp4046353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!