Anandamide modulates the neuroendocrine responses induced by extracellular volume expansion.

Clin Exp Pharmacol Physiol

Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, SP, Brazil.

Published: October 2013

(1) The aim of the present study was to evaluate the effects of intracerebroventricular administration of anandamide (AEA), an inhibitor of fatty acid amide hydrolase activity (URB597) and a CB1 receptor (CB1 R) antagonist (AM251) on the homeostatic responses elicited by extracellular volume expansion (EVE) in male adult rats. (2) Pretreatment with AEA (100 ng/4 μL) significantly reduced the effect of hypertonic (H-) EVE on plasma concentrations of prolactin (PRL), oxytocin (OT) and corticosterone, but not vasopressin (AVP). Administration of URB597 (20 μg/5 μL) alone significantly reduced PRL, OT, AVP and corticosterone in the H-EVE group. Conversely, URB597 and AEA had no significant effect on basal hormone concentrations. Pretreatment with AM251 (200 ng/2 μL) potentiated OT but did not change AVP plasma levels in the H-EVE group. (3) Hypertonic EVE significantly increased AVP and OT mRNA expression in the supraoptic nucleus (SON), an effect that was blunted in AEA-pretreated rats. Pretreatment with AEA did not change the percentage of vasopressinergic or oxytocinergic neurons colocalizing c-Fos in the SON, but increased nitrate concentrations in the median eminence of animals subjected to H-EVE. (4) The present data suggest that: (i) vasopressinergic and oxytocinergic neurons may be differentially affected by AEA; (ii) activation of CB1 R may restrain the response of the neurohypophyseal system (NHS) to EVE; (iii) the hypothalamic-pituitary-adrenal axis, PRL and the NHS may still be sensitive to AEA after EVE, with these effects probably not dependent on AEA metabolism; and (iv) AEA and nitric oxide could interact in vivo as modulators to directly control stress-induced responses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.12155DOI Listing

Publication Analysis

Top Keywords

extracellular volume
8
volume expansion
8
aea
8
rats pretreatment
8
pretreatment aea
8
μl reduced
8
hypertonic eve
8
h-eve group
8
vasopressinergic oxytocinergic
8
oxytocinergic neurons
8

Similar Publications

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Passive dehydration reduces muscle thickness after resistance exercise.

J Sports Sci

January 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.

Unlabelled: Dehydration-induced increased plasma osmolality (P) alters whole body fluid balance which could alter resistance exercise (RE) induced intramuscular (IM) fluid shift.

Purpose: The purpose of the current report was to investigate the effect of dehydration on RE-induced change in whole body fluid balance in resistance trained (RT) men.

Methods: Fourteen RT men performed two identical RE sessions, either in a hydrated (EUHY) or dehydrated (DEHY) state induced by a 24 hr fluid restriction.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is the ultimate manifestation of the myocardial response to various genetic and environmental changes and is characterized mainly by impaired left ventricular systolic and diastolic function. DCM can ultimately lead to heart failure, ventricular arrhythmia (VA), and sudden cardiac death (SCD), making it a primary indication for heart transplantation. With advancements in modern medicine, several novel techniques for evaluating myocardial involvement and disease severity from diverse perspectives have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!