Background: Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully.
Methodology/principal Findings: In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher.
Conclusions: Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated "omics" approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712917 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068886 | PLOS |
Food Res Int
February 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:
The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the Sargassum siliquastrum fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice's gastric injury.
View Article and Find Full Text PDFFitoterapia
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China. Electronic address:
Gastric ulcers (GUs) are superficial diffuse lesions of the gastric mucosa that are characterised by being vulnerable to infection, difficult to cure and liable to recur. Bletilla ochracea Schltr. (BO) has the effects of astringent hemostasis, muscle growth and pain relief.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh, Egypt. Electronic address:
Alcoholic liver disease (ALD) is a commonly known liver disease mediated by prolonged alcohol consumption. Aescin is a triterpene saponin that can manage several conditions, including brain trauma, arthritis, venous congestion, stroke, and thrombophlebitis. Even so, studies illustrating the aescin role in ALD are scarce.
View Article and Find Full Text PDFProteomes
December 2024
Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications-DEC, albendazole, and ivermectin-exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control.
View Article and Find Full Text PDFRisk Manag Healthc Policy
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Ethanol, a bioactive compound prevalent in both social and industrial applications, is present in alcoholic beverages as well as a range of everyday products. In food, ethanol functions primarily as an additive or a by-product of fermentation, while in pharmaceuticals and cosmetics, it serves as a solvent or preservative. Despite its widespread use, three critical research gaps exist in current literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!