Regulatory T-cells (Tregs) are central for immune homeostasis and divided in thymus-derived natural Tregs and peripherally induced iTreg. However, while phenotype and function of iTregs are well known, a remarkable lack exists in knowledge about signaling mechanisms leading to their generation from naïve precursors in peripheral tissues. Using antigen specific naïve T-cells from mice, we investigated CD4+ CD25+ FoxP3- iTreg induction during antigen-specific T-cell receptor (TCR) stimulation with weak antigen presenting cells (APC). We show that early signaling pathways such as ADAM-17-activation appeared similar in developing iTreg and effector cells (Teff) and both initially shedded CD62-L. But iTreg started reexpressing CD62-L after 24 h while Teff permanently downmodulated it. Furthermore, between 24 and 72 hours iTreg presented with significantly lower phosphorylation levels of Akt-S473 suggesting lower activity of the PI3K/Akt-axis. This was associated with a higher expression of the Akt hydrophobic motif-specific phosphatase PHLPP1 in iTreg. Importantly, the lack of costimulatory signals via CD28 from weak APC was central for the development of regulatory function in iTreg but not for the reappearance of CD62-L. Thus, T-cells display a window of sensitivity after onset of TCR triggering within which the intensity of the PI3K/Akt signal controls entry into either effector or regulatory pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708928 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068378 | PLOS |
Blood
January 2025
Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States.
Anemia is a common consequence of myelofibrosis. The treatment of myelofibrosis-associated anemia is complicated by a multifactorial pathobiology, as well as a lack of therapies that result in normalization of the bone marrow and complete restoration of its function. Established agents that are used to treat anemia in other bone marrow failure states such as myelodysplastic syndromes and aplastic anemia, are used for the treatment of myelofibrosis-associated anemia.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia.
Purpose: Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner.
View Article and Find Full Text PDFSci Signal
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!