Background: The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms.
Methodology/principal Findings: To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method.
Conclusion/significance: This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707916 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068318 | PLOS |
PLoS Negl Trop Dis
January 2025
Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
Understanding host utilization by mosquito vectors is essential to assess the risk of vector-borne diseases. Many studies have investigated the feeding patterns of Culex mosquitoes by molecular analysis of blood-meals from field collected mosquitoes. However, these individual small-scale studies only provide a limited understanding of the complex host-vector interactions when considered in isolation.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States.
We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team.
View Article and Find Full Text PDFMethodsX
June 2025
Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
and mosquitoes, known for spreading arboviruses like dengue and West Nile, thrive in cities, posing health risks to urban populations. Climate change can create suitable climatic conditions for these vectors to spread further in Europe. Cities contain numerous landscape and infrastructure elements, such as storm drains, that allow stagnant water build-up facilitating mosquito breeding.
View Article and Find Full Text PDFCureus
December 2024
Geriatrics and Long-Term Care, Rumailah Hospital - Hamad Medical Corporation, Doha, QAT.
Background and objective Viral infections caused by cytomegalovirus, lymphocytic choriomeningitis virus, varicella-zoster virus, herpes simplex type 1 and type 2, rubella, measles, rubeola, HIV, West Nile virus, Lassa virus, and mumps are known to be associated with hearing loss. There have been reports of inner ear involvement in coronavirus disease 2019 (COVID-19) patients but the extent and variations in cochlear involvement of symptomatic and asymptomatic patients has not been adequately described. This study aimed to evaluate the hearing status among symptomatic and asymptomatic COVID-19 patients to address the prospects for routine screening for hearing loss in COVID-19 patients.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!