SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715410 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1003496 | DOI Listing |
Int J Cancer
December 2024
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression.
View Article and Find Full Text PDFJ Oral Microbiol
December 2024
Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown.
Aim: The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and (Pg) LPS affect the global proteome of HGFs.
J Virol
December 2024
Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains.
View Article and Find Full Text PDFMar Biotechnol (NY)
November 2024
Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!