Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR.

Nucleic Acids Res

School of Public Health, University of California, Berkeley, CA 94720, USA, Department of Chemistry, University of California, Berkeley, CA 94720, USA, Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA, UC San Francisco/UC Berkeley Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD 20852, USA, Guangdong Poison Control Center, Guangzhou 510300, China and Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, NL-3508, The Netherlands.

Published: September 2013

Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763562PMC
http://dx.doi.org/10.1093/nar/gkt613DOI Listing

Publication Analysis

Top Keywords

digital pcr
8
single molecule
4
molecule quantitation
4
quantitation sequencing
4
sequencing rare
4
rare translocations
4
translocations microfluidic
4
microfluidic nested
4
nested digital
4
pcr cancers
4

Similar Publications

Liquid biopsy (LB) has revolutionized molecular pathology, offering non-invasive insights into tumor biology. However, widespread adoption is hindered by a lack of standardized protocols, requiring robust quality control and harmonized workflows. Large-scale studies are needed to establish effective standard operating procedures (SOPs), particularly for circulating tumor DNA (ctDNA) assays tailored to different disease stages.

View Article and Find Full Text PDF

Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.

View Article and Find Full Text PDF

Posterior Limbal Mesenchymal Stromal Cells Promote Proliferation and Stemness of Transition Zone Cells: A Novel Insight Into Corneal Endothelial Rejuvenation.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.

Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.

View Article and Find Full Text PDF

Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.

Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.

Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!