Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763562 | PMC |
http://dx.doi.org/10.1093/nar/gkt613 | DOI Listing |
Crit Rev Oncol Hematol
January 2025
Division of Medical Oncology, The Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
Liquid biopsy (LB) has revolutionized molecular pathology, offering non-invasive insights into tumor biology. However, widespread adoption is hindered by a lack of standardized protocols, requiring robust quality control and harmonized workflows. Large-scale studies are needed to establish effective standard operating procedures (SOPs), particularly for circulating tumor DNA (ctDNA) assays tailored to different disease stages.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.
View Article and Find Full Text PDFSci Rep
January 2025
Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA.
Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.
View Article and Find Full Text PDFAIDS
January 2025
Departments of Medicine.
Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.
Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.
Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!