Existing machine-readable resources for large-scale gene regulatory networks usually do not provide context information characterizing the activating conditions for a regulation and how targeted genes are affected. Although this information is essentially required for data interpretation, available networks are often restricted to not condition-dependent, non-quantitative, plain binary interactions as derived from high-throughput screens. In this article, we present a comprehensive Petri net based regulatory network that controls the diauxic shift in Saccharomyces cerevisiae. For 100 specific enzymatic genes, we collected regulations from public databases as well as identified and manually curated >400 relevant scientific articles. The resulting network consists of >300 multi-input regulatory interactions providing (i) activating conditions for the regulators; (ii) semi-quantitative effects on their targets; and (iii) classification of the experimental evidence. The diauxic shift network compiles widespread distributed regulatory information and is available in an easy-to-use machine-readable form. Additionally, we developed a browsable system organizing the network into pathway maps, which allows to inspect and trace the evidence for each annotated regulation in the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794591 | PMC |
http://dx.doi.org/10.1093/nar/gkt631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!