Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over-expressed in most cases of non-small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab-conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over-expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549-luc-C8 lung tumors is shown using non-invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non-targeted drug solution, drug-loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC-MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201301417 | DOI Listing |
Clin Lung Cancer
November 2024
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Immuno-chemotherapy has demonstrated significant anti-tumor effects in patients with resectable nonsmall cell lung cancer (NSCLC). Additionally, for patients initially diagnosed with unresectable stage III NSCLC, induction immuno-chemotherapy may achieve tumor downstaging, enabling conversion to resectable disease allowing for by R0 resection. This study aimed to assess the effectiveness and safety of induction immuno-chemotherapy followed by conversion surgery in unresectable stage III NSCLC.
View Article and Find Full Text PDFClin Lung Cancer
December 2024
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address:
Background: Small cell lung cancer (SCLC) is initially highly sensitive to chemotherapy, which often leads to significant tumor reduction. However, the majority of patients eventually develop resistance, and the disease is further complicated by its "cold" tumor microenvironment, characterized by low tumor immunogenicity and limited CD8+ T cell infiltration. These factors contribute to the poor response to immunotherapy in many cases of extensive-stage SCLC (ES-SCLC).
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, Delhi, India.
Malignant peripheral nerve sheath tumours (MPNSTs) are aggressive sarcomas that occur rarely in the cervix. Considering the varied clinical features and the absence of a pathognomonic immunohistochemical marker, it is always challenging to diagnose these tumours. Treatment has not been standardised as yet, but a combination of surgery, radiotherapy and chemotherapy is used to treat MPNSTs of the cervix.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
National Cancer Institute, Bethesda, MD. Electronic address:
This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center, Initiative, Immunology, Frontier Research Center, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan. Electronic address:
Background: Photoimmunotherapy (PIT) is a potent modality for cancer treatment. The conventional PIT regimen involves the systemic delivery of an antibody-photoabsorber conjugate, followed by a 24-h waiting period to ensure adequate localisation on the target cells. Subsequent exposure to near-infrared (NIR) light selectively damages the target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!