Type II collagen is a key cartilaginous extracellular protein required for normal endochondral development and cartilage homeostasis. COL2A1 gene expression is positively regulated by the NAD-dependent protein deacetylase Sirtuin 1 (SirT1), through its ability to bind chromatin regions of the COL2A1 promoter and enhancer. Although SirT1/Sox9 binding on the enhancer site of COL2A1 was previously demonstrated, little is known about its functional role on the gene promoter site. Here, we examined the mechanism by which promoter-associated SirT1 governs COL2A1 expression. Human chondrocytes were encapsulated in three-dimensional (3D) alginate beads where they exhibited upregulated COL2A1 mRNA expression and increased levels of SirT1 occupancy on the promoter and enhancer regions, when compared to monolayer controls. Chromatin immunoprecipitation (ChIP) analyses of 3D cultures showed augmented levels of the DNA-binding transcription factor SP1, and the histone methyltransferase Set7/9, on the COL2A1 promoter site. ChIP reChIP assays revealed that SirT1 and Set7/9 form a protein complex on the COL2A1 promoter region of 3D-cultured chondrocytes, which also demonstrated elevated trimethylated lysine 4 on histone 3 (3MeH3K4), a hallmark of Set7/9 methyltransferase activity. Advanced passaging of chondrocytes yielded a decrease in 3MeH3K4 and Set7/9 levels on the COL2A1 promoter and reduced COL2A1 expression, suggesting that the SirT1/Set7/9 complex is preferentially formed on the COL2A1 promoter and required for gene activation. Interestingly, despite SirT1 occupancy, its deacetylation targets (ie, H3K9/14 and H4K16) were found acetylated on the COL2A1 promoter of 3D-cultured chondrocytes. A possible explanation for this phenotype is the enrichment of the histone acetyltransferases P300 and GCN5 on the COL2A1 promoter of3 D-cultured chondrocytes. Our study indicates that Set7/9 prevents the histone deacetylase activity of SirT1, potentiating euchromatin formation on the promoter site of COL2A1 and resulting in morphology-dependent COL2A1 gene transactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2052DOI Listing

Publication Analysis

Top Keywords

col2a1 promoter
28
col2a1
15
col2a1 expression
12
promoter site
12
promoter
10
col2a1 gene
8
promoter enhancer
8
site col2a1
8
sirt1 occupancy
8
3d-cultured chondrocytes
8

Similar Publications

Lentiviral Vector-Mediated Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model.

Hum Gene Ther

November 2024

Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA.

Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease.

View Article and Find Full Text PDF

The IRF1/GBP5 axis promotes osteoarthritis progression by activating chondrocyte pyroptosis.

J Orthop Translat

January 2024

Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China.

Background: Osteoarthritis (OA) is a chronic degenerative joint disease that primarily affects middle-aged and elderly individuals. The decline in chondrocyte function plays a crucial role in the development of OA. Inflammasome-mediated chondrocyte pyroptosis is implicated in matrix degradation and cartilage degeneration in OA patients.

View Article and Find Full Text PDF

Measuring transcription factor function with cell type-specific somatic transgenesis in chicken embryos.

Dev Biol

April 2024

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. Electronic address:

Retroviral-mediated misexpression in chicken embryos has been a powerful research tool for developmental biologists in the last two decades. In the RCASBP retroviral vectors that are widely used for in vivo somatic transgenesis, a coding sequence of interest is under the transcriptional control of a strong viral promoter in the long terminal repeat. While this has proven to be effective for studying secreted signalling proteins, interpretation of the mechanisms of action of nuclear factors is more difficult using this system since it is not clear whether phenotypic effects are cell-autonomous or not, and therefore whether they represent a function of the endogenous protein.

View Article and Find Full Text PDF

Background: Excess reactive oxygen species generated by NADPH oxidase 2 (Nox2) in response to ethanol exposure mediate aspects of skeletal toxicity including increased osteoclast differentiation and activity. Because perturbation of chondrocyte differentiation in the growth plate by ethanol could be prevented by dietary antioxidants, we hypothesized that Nox2 in the growth plate was involved in ethanol-associated reductions in longitudinal bone growth.

Methods: Nox2 conditional knockout mice were generated, where the essential catalytic subunit of Nox2, cytochrome B-245 beta chain (Cybb), is deleted in chondrocytes using a Cre-Lox model with Cre expressed from the collagen 2a1 promoter (Col2a1-Cre).

View Article and Find Full Text PDF

Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration.

Cell Mol Biol Lett

December 2023

Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.

Background: Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!