Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne.

Microbiologyopen

Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, Oregon.

Published: August 2013

Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831629PMC
http://dx.doi.org/10.1002/mbo3.109DOI Listing

Publication Analysis

Top Keywords

anthracis sterne
12
spxa1 spxa2
12
genes
11
spx
8
paralogous spx
8
bacillus anthracis
8
disulfide stress
8
thiol homeostasis
8
genes spxa1
8
spx paralog
8

Similar Publications

The anthrax pathogen can remain dormant as spores in soil for many years. This applies to both natural foci and to sites of anthropogenic activity such as tanneries, abattoirs, or wool factories. The A.

View Article and Find Full Text PDF

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

We present the results of the whole-genome sequencing of a strain isolated from a permafrost sample collected in Yakutia, Russia. This strain was named YakM12. Phylogenetic analysis showed that YakM12 belongs to the canSNP group A.

View Article and Find Full Text PDF

Medicinal plants are rich sources of bioactive compounds with diverse pharmacological properties, including antimicrobial activities. This study aimed to assess the antibiofilm potential of methanol and ethanol extracts from nine selected medicinal plants, as well as their synergistic effects with doxycycline against strains. Standard procedures were employed to determine the phytochemical composition, total phenolic, and flavonoid contents of the extracts.

View Article and Find Full Text PDF

Genetic basis of clarithromycin resistance in .

Microbiol Spectr

June 2024

Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

Article Synopsis
  • * Researchers used whole-genome sequencing to identify genetic markers that confer resistance to clarithromycin, an antibiotic used for treating anthrax, by isolating resistant mutants derived from a non-infectious strain.
  • * They discovered specific genetic mutations in the L22 ribosomal protein that were linked to resistance, highlighting the importance of rapid sequencing for understanding and predicting antimicrobial resistance in anthrax.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!