Purpose: Multiple myeloma remains an incurable disease. New approaches to develop better tools for improving patient prognostication and monitoring treatment efficacy are very much needed. In this study, we aimed to evaluate the potential of metabolomics by (1)H-NMR to provide information on metabolic profiles that could be useful in the management of multiple myeloma.

Experimental Design: Serum samples were collected from multiple myeloma patients at the time of diagnosis and after achieving complete remission. A matched control set of samples was also included in the study. The (1)H-NMR measurements used to obtain the metabolic profile for each patient were followed by the application of univariate and multivariate statistical analyses to determine significant differences.

Results: Metabolic profiles of multiple myeloma patients at diagnosis exhibited higher levels of isoleucine, arginine, acetate, phenylalanine, and tyrosine, and decreased levels of 3-hydroxybutyrate, lysine, glutamine, and some lipids compared with the control set. A similar analysis conducted in multiple myeloma patients after achieving complete remission indicated that some of the metabolic changes (i.e., glutamine, cholesterol, lysine) observed at diagnosis displayed a variation in the opposite direction upon responding to treatment, thus contributing to multiple myeloma patients having a closer metabolic profile to those of healthy individuals after the disappearance of major disease manifestations.

Conclusions: The results highlight the potential of metabolic profiles obtained by 1H-NMR in identifying multiple myeloma biomarkers that may be useful to objectively discriminate individuals with and without multiple myeloma, and monitor response to treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-12-2917DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
32
myeloma patients
20
achieving complete
12
complete remission
12
metabolic profiles
12
multiple
9
control set
8
metabolic profile
8
myeloma
7
metabolic
6

Similar Publications

Background: Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease.

View Article and Find Full Text PDF

PARP1 inhibitor niraparib exerts synergistic antimyeloma effect with bortezomib through inducing DNA damage and inhibiting DNA repair.

Free Radic Biol Med

December 2024

Hematology Institute, School of Medicine, Northwest University, Xian 710069, Shaanxi, China; Deparment of Hematology, Affiliated Hospital of Northwest University & Xian No. 3 Hospital, Xian 710018, Shaanxi, China. Electronic address:

Despite the improvements in outcomes for patients with multiple myeloma (MM) over the past decade, the disease remains incurable, and even those patients who initially respond favorably to induction therapy eventually suffer from relapse. Consequently, there is an urgent need for the development of novel therapeutic agents and strategies to enhance the treatment outcomes for patients with MM. The proteasome inhibitor bortezomib (BTZ) elicits endoplasmic reticulum (ER) stress and oxidative stress in MM cells, subsequent DNA damage, ultimately inducing cell apoptosis.

View Article and Find Full Text PDF

Background: Recent advancements in cellular therapies, particularly CAR-T and T cell engaging bispecific antibodies have significantly altered the therapeutic landscape for Multiple Myeloma. There are two U.S.

View Article and Find Full Text PDF

Patients undergoing autologous stem cell transplantation (auto-SCT) face elevated risks of infections. Additionally, patients colonized in the gastrointestinal tract with antibiotic-resistant bacteria (ARB) are at higher risk of infection with ARB and other infections. Therefore, patients colonized with ARB before auto-SCT should present with an exceptionally high incidence of infections.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!