Role of Akt signaling pathway in delayed cerebral vasospasm after subarachnoid hemorrhage in rats.

Acta Neurochir (Wien)

Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China,

Published: November 2013

Background: Akt plays an important role in cell survival, proliferation, apoptosis and other activities. It also has been involved in maintaining smooth muscle cell contraction phenotypes in vitro and in vivo. Recent studies have focused on the inhibition of Akt in acute vasospasm and neuronal apoptosis after subarachnoid hemorrhage (SAH). However, its role in delayed cerebral vasospasm (DCVS) has not been reported.

Methods: In this study, using a "two-hemorrhage" rat model of SAH, we examined the expression of p-Akt and the formation of vasospasm in the basilar arteries. To investigate the possible role of Akt in phenotypic switching, we performed immunohistochemical staining to examine expressions of SMα-actin and proliferating cell nuclear antigen (PCNA), markers of smooth muscle phenotypic switching.

Results: We found that the basilar arteries exhibited vasospasm after SAH and that vasospasm became most severe on day 7 after SAH. Elevated protein expression of p-Akt was detected 4 days after SAH induction, peaked on day 7, and recovered on day 21, which was in a parallel time course to the development of DCVS. Moreover, results of immunohistochemical staining revealed enhanced expression of PCNA but gradual reduction in expression of SMα-actin from day 1 to day 7 after SAH; then, the expressions of PCNA and SMα-actin gradually recovered until day 21.

Conclusions: These results support a novel mechanism in which the Akt signaling pathway plays an important role in the proliferation of smooth muscle cells (SMCs) rather than inducing phenotype switching in basilar arteries, which promotes the development of DCVS after SAH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-013-1808-8DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
basilar arteries
12
role akt
8
akt signaling
8
signaling pathway
8
delayed cerebral
8
cerebral vasospasm
8
subarachnoid hemorrhage
8
plays role
8
expression p-akt
8

Similar Publications

Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases.

Pharmacol Rep

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.

View Article and Find Full Text PDF

Background: Previous studies reported significant relationships between obesity and pulmonary dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced obese mouse through transcriptomic and molecular analyses.

Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for 12 weeks.

View Article and Find Full Text PDF

Airway inflammation, a hallmark feature of asthma, drives many canonical features of the disease, including airflow limitation, mucus plugging, airway remodeling, and hyperresponsiveness. The T2 inflammatory paradigm is firmly established as the dominant mechanism of asthma pathogenesis, largely due to the success of inhaled corticosteroids and biologic therapies targeting components of the T2 pathway, including IL-4, IL-5, IL-13, and thymic stromal lymphopoietin (TSLP). However, up to 30% of patients may lack signatures of meaningful T2 inflammation (ie, T2 low).

View Article and Find Full Text PDF

Introduction: The risk of kidney fibrosis is significantly elevated in individuals with diabetes, chronic nephritis, trauma, and other underlying conditions. Concurrently, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and their extracellular vesicles (MSC-Exos) have gained prominence in regenerative medicine. In light of these observations, we are undertaking a meta-analysis to elucidate the influence of hUCB-MSCs and MSC-Exos on kidney fibrosis.

View Article and Find Full Text PDF

NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!