A novel fluoroaryl azide with an alkyne tail was synthesized and precisely immobilized within a PEG-based matrix via two-photon induced decomposition and nitrene insertion. Well defined 3D positioning of the terminal alkyne allows site-specific micropatterning. The subsequent 3D alkyne-azide cycloaddition was realized using dye-functionalized molecules containing "clickable" azide moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc43533dDOI Listing

Publication Analysis

Top Keywords

alkyne-azide cycloaddition
8
cycloaddition spatiotemporally
4
spatiotemporally controlled
4
controlled combination
4
combination aryl
4
aryl azide
4
azide photochemistry
4
photochemistry two-photon
4
two-photon grafting
4
grafting novel
4

Similar Publications

Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions.

View Article and Find Full Text PDF

The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An -nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar.

View Article and Find Full Text PDF

The synthesis of novel quinoline-fused triazolo-azepine derivatives has been reported using an intramolecular 1,3-dipolar azide-alkyne cycloaddition strategy. This method possesses considerable potential to synthesize five- and seven-membered rings in high yields (65-87%) without the necessity of metal catalysts or additives. Additionally, this methodology was applicable to pyridine and tetralone based adducts to afford triazolo-azepine derivatives.

View Article and Find Full Text PDF

The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma.

View Article and Find Full Text PDF

Preparation of Protein Lysates Using Biorthogonal Chemical Reporters for Click Reaction and in-Gel Fluorescence Analysis.

Bio Protoc

November 2024

State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.

Bioorthogonal chemical reporters are non-native chemical handles introduced into biomolecules of living systems, typically through metabolic or protein engineering. These functionalities can undergo bioorthogonal reactions, such as copper-catalyzed alkyne-azide cycloaddition (CuAAC), with small-molecule probes, enabling the tagging and visualization of biomolecules. This approach has greatly enhanced our understanding of cellular dynamics, enzyme targeting, and protein post-translational modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!