Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors.

Biosens Bioelectron

University of Milan-Bicocca, Department of Materials Science, Via R. Cozzi 53, I-20125 Milan, Italy.

Published: December 2013

Since the introduction by Gold et al. in 1990, nucleic acid aptamers had evolved to become a true contender in biosensors for protein and cell detections. Aptamers are short strands of synthetically designed DNA or RNA oligonucleotides that can be self-assembled into unique 3-dimensional structures and can bind to different proteins, cells or even small molecules at a high level of specificity and affinity. In recent years, there had been many reports in literature in using aptamers in place of conventional antibodies as capture biomolecules on the surface. This is mainly due to the better thermal stability properties and ease in production. Consequently, also these characteristics allowed the aptamers to find use in field effect transistors (FETs) based upon 1D nanostructured (1D-NS) as label-free biosensing. In terms of designing label-free platforms for biosensors applications, 1D-NS FET had been an attractive option due to reported high sensitivities toward protein targets arising from the large surface area for detection as well as to their label-free nature. Since the first aptamer-based 1D-NS FET biosensor had surfaced in 2005, there had been many more improvements in the overall design and sensitivity in recent years. In this review, the latest developments in synergizing these two interesting areas of research (aptamers and 1D-NS FET) will be discussed for a range of different nanowire types as well as for the detection results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.06.033DOI Listing

Publication Analysis

Top Keywords

1d-ns fet
12
nucleic acid
8
acid aptamers
8
aptamers
6
synergizing nucleic
4
aptamers 1-dimensional
4
1-dimensional nanostructures
4
label-free
4
nanostructures label-free
4
label-free field-effect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!