A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5. | LitMetric

Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

Biochim Biophys Acta

Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada. Electronic address:

Published: November 2013

STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2013.07.005DOI Listing

Publication Analysis

Top Keywords

bile acids
28
acids stard5
12
stard5
9
characterization binding
8
binding secondary
8
secondary conjugated
8
bile
8
conjugated bile
8
secondary bile
8
acids
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!