Membrane binding properties of IRSp53-missing in metastasis domain (IMD) protein.

Biochim Biophys Acta

Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary. Electronic address:

Published: November 2013

The 53-kDa insulin receptor substrate protein (IRSp53) organizes the actin cytoskeleton in response to stimulation of small GTPases, promoting the formation of cell protrusions such as filopodia and lamellipodia. IMD is the N-terminal 250 amino acid domain (IRSp53/MIM Homology Domain) of IRSp53 (also called I-BAR), which can bind to negatively charged lipid molecules. Overexpression of IMD induces filopodia formation in cells and purified IMD assembles finger-like protrusions in reconstituted lipid membranes. IMD was shown by several groups to bundle actin filaments, but other groups showed that it also binds to membranes. IMD binds to negatively charged lipid molecules with preference to clusters of PI(4,5)P2. Here, we performed a range of different in vitro fluorescence experiments to determine the binding properties of the IMD to phospholipids. We used different constructs of large unilamellar vesicles (LUVETs), containing neutral or negatively charged phospholipids. We found that IMD has a stronger binding interaction with negatively charged PI(4,5)P2 or PS lipids than PS/PC or neutral PC lipids. The equilibrium dissociation constant for the IMD-lipid interaction falls into the 78-170μM range for all the lipids tested. The solvent accessibility of the fluorescence labels on the IMD during its binding to lipids is also reduced as the lipids become more negatively charged. Actin affects the IMD-lipid interaction, depending on its polymerization state. Monomeric actin partially disrupts the binding, while filamentous actin can further stabilize the IMD-lipid interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2013.07.006DOI Listing

Publication Analysis

Top Keywords

negatively charged
20
imd-lipid interaction
12
imd
9
binding properties
8
charged lipid
8
lipid molecules
8
membranes imd
8
actin
5
negatively
5
charged
5

Similar Publications

Catalytic Assembly of Peptides Mediated by Complex Coacervates.

ACS Nano

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.

View Article and Find Full Text PDF

Planar hexacoordination is an extremely uncommon phenomenon for the atoms that belong to the main group. Within this article, we have analyzed the potential energy surfaces (PES) of ABeCB (A = N, P, As, Sb, and Bi) clusters in neutral, monocationic, monoanionic, dicationic, and dianionic states using density functional theory (DFT). Among which PBeCB, PBeCB, AsBeCB, AsBeCB, SbBeCB, and BiBeCB clusters contain a planar hexacoordinate boron (phB) atom in the global minimum energy structures with symmetry.

View Article and Find Full Text PDF

Background: Stigma toward transgender children and adolescents negatively impacts their health and educational outcomes. Contact with members of stigmatized groups can dismantle stereotypes and reduce stigma by facilitating exposure to the unique cognitive and emotional perspectives of individuals within the group. Recent evidence suggests that video-based contact interventions can be as effective as face-to-face encounters, but challenges lie in protecting the identities of transgender youth, since many of them live in stealth.

View Article and Find Full Text PDF

Observation of morphological changes in silicon-based negative-electrode active materials during charging/discharging using operando scanning electron microscopy.

Microscopy (Oxf)

December 2024

Green Innovation Center, Green Transformation Division, Panasonic Holdings Corporation, 3-1-1 Yagumo-Nakamachi, Moriguchi City, Osaka 570-8501, Japan.

The direct observation of the morphological changes in silicon-based negative electrode (Si-based negative electrode) materials during battery charging and discharging is useful for handling such materials and in electrode plate design. We developed an operando scanning electron microscopy (operando SEM) technique to quantitatively evaluate the expansion and contraction of Si-based negative electrode materials. A small all-solid-state lithium-ion battery was charged and discharged, and the expansion/contraction of particles while harnessing capacity was observed using SEM.

View Article and Find Full Text PDF

Macrophage Membrane-Cloaked ROS-Responsive Albumin Nanoplatforms for Targeted Delivery of Curcumin to Alleviate Acute Liver Injury.

Mol Pharm

January 2025

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!