Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The adult brain has long been viewed as a collection of neuronal networks that maintain a fixed configuration of synaptic connections. Brain plasticity and learning was thought to depend exclusively on changes in the gain and offset of these connections. Over the last 50 years, molecular and cellular studies of neuroplasticity have altered this view. Brain plasticity is now viewed as a continuum of structural changes that could vary from long-range axon growth to the twitching of dendritic spines and synaptic receptor composition dynamics. Plasticity proteins similar to those that drive neuronal development may underpin brain plasticity, and consequently could regulate adaptations to new experiences and learning. In vivo imaging has confirmed that neuronal plasticity in the adult brain involves subtle structural changes at synaptic connections, including synapse formation and pruning. Synaptic structural changes are associated with experience-dependent plasticity, learning, brain traumas and neurodegeneration. Owing to the expanding toolbox of in vivo imaging we have come to the brink of understanding the causal relationship between structural synaptic network dynamics and functional brain plasticity. This review summarizes the technical developments in the imaging of laboratory animals' brains in vivo and the insights they have provided into the mechanisms of brain plasticity and learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2013.07.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!