Hippocampal calcium dysregulation at the nexus of diabetes and brain aging.

Eur J Pharmacol

Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States.

Published: November 2013

Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838483PMC
http://dx.doi.org/10.1016/j.ejphar.2013.07.024DOI Listing

Publication Analysis

Top Keywords

insulin signaling
16
brain aging
8
insulin
8
impaired insulin
8
ca2+
8
ca2+ dysregulation
8
ca2+ dyshomeostasis
8
aging
7
hippocampal calcium
4
calcium dysregulation
4

Similar Publications

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, = 40) and an observation group (Obs, = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each.

View Article and Find Full Text PDF

Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells.

iScience

December 2024

Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.

Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction.

View Article and Find Full Text PDF

One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!