Nateglinide is an oral antidiabetic agent that should be administered 10-30 min before the meal, but it shows low and pH-dependent solubility that may reduce its oral bioavailability. To improve nateglinide dissolution rate, the active was co-milled with three different super-disintegrants or with some hydrophilic excipients, in 1:1, 1:2, and 1:4 drug to carrier ratio (w:w). The three super-disintegrants were crosslinked polyvinylpyrrolidone (PVPC), sodium starch glycolate (SSG) and crosslinked carboxymethyl cellulose (CMCC). The three hydrophilic excipient were amorphous silica (AS), mannitol (M) and Poloxamer (PO). A strong enhancement of drug dissolution rate was obtained from the nateglinide:super-disintegrant co-milled systems in 1:4 ratio, which can be explained by a combination of several factors: an increase in wettability, due to the hydrophilic nature of the carriers, a possible reduction of particle size and a more intimate dispersion of the drug onto the carrier, as a result of the mechanical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2013.06.085DOI Listing

Publication Analysis

Top Keywords

dissolution rate
8
three super-disintegrants
8
drug carrier
8
technological approaches
4
approaches improve
4
improve dissolution
4
dissolution behavior
4
behavior nateglinide
4
nateglinide lipophilic
4
lipophilic insoluble
4

Similar Publications

Purpose: Improving drug solubility is crucial in formulating poorly water-soluble drugs, especially for oral administration. The incorporation of drugs into mesoporous silica nanoparticles (MSN) is widely used in the pharmaceutical industry to improve physical stability and solubility. Therefore, this study aimed to elucidate the mechanism of poorly water-soluble drugs within MSN, as well as evaluate the impact on the dissolution and physical stability.

View Article and Find Full Text PDF

Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.

View Article and Find Full Text PDF

Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.

View Article and Find Full Text PDF

Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water.

Angew Chem Int Ed Engl

January 2025

Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.

Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.

View Article and Find Full Text PDF

Metallic vanadium is innovatively introduced for a superior aqueous zinc-ion battery cathode material, which is activated through dissolution-deposition transition to amorphous VO·3HO and delivers an excellent capacity of 610 mA h g at 0.1 A g and remarkable capacity retention rate of 80.3% after 1000 cycles at 1 A g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!