The sustainability of semi-intensive aquaculture relies on management practices that simultaneously improve production efficiency and minimize the environmental impacts of this activity. The purpose of the present work was to develop a mathematical model that reproduced the dynamics of a semi-intensive fish earth pond, to simulate different management scenarios for optimizing fish production. The modeling approach consisted of coupling a biogeochemical model that simulated the dynamics of the elements that are more likely to affect fish production and cause undesirable environmental impacts (nitrogen, phosphorus and oxygen) to a fish growth model based on the Dynamic Energy Budget approach. The biogeochemical sub-model successfully simulated most water column and sediment variables. A good model fit was also found between predicted and observed white seabream (Diplodus sargus) growth data over a production cycle. In order to optimize fish production, different management scenarios were analysed with the model (e.g. increase stocking densities, decrease/increase water exchange rates, decrease/increase feeding rates, decrease phosphorus content in fish feeds, increase food assimilation efficiency and decrease pellets sinking velocity) to test their effects on the pond environment as well as on fish yields and effluent nutrient discharges. Scenarios were quantitatively evaluated and compared using the Analytical Hierarchical Process (AHP) methodology. The best management options that allow the maximization of fish production while maintaining a good pond environment and minimum impacts on the adjacent coastal system were to double standard stocking densities and to improve food assimilation efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.06.090DOI Listing

Publication Analysis

Top Keywords

fish production
20
fish
9
energy budget
8
environmental impacts
8
management scenarios
8
stocking densities
8
food assimilation
8
assimilation efficiency
8
pond environment
8
production
7

Similar Publications

Artificial fish nests are common tools in fisheries management, providing spawning grounds to enhance the size and diversity of fish populations. This study aimed to explore the effects of deployment locations on the reproductive efficiency and preferences of fish with adhesive and demersal eggs using artificial nests. Floating artificial nests were deployed in three regions (upstream, midstream, and downstream) of a reservoir in Zhejiang, China, at locations with three topographical types: steep slope (reservoir shore, slopes > 60°), gentle slope (reservoir shore, slopes < 30°), and confluence (middle thread of channel).

View Article and Find Full Text PDF

Chinese yam polysaccharide induces the differentiation and natural antibody secretion of IgM B cells to prevent Aeromonas hydrophila infection in grass carp.

Int J Biol Macromol

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:

Chinese yam polysaccharide (CYP) is an effective immunostimulant, however, its efficacy in grass carp, an important commercial fish species in Asia, remains untested. Here, our study evaluated the immunostimulatory effects of CYP on IgM B cells in vitro and on humoral immunity and immune defense against Aeromonas hydrophila infection in vivo. In vitro stimulation experiments showed that CYP could induce the secretion of IgM antibodies, because it could stimulate the proliferation and differentiation of head kidney IgM B cells.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Associations of Lifestyle Factors with Oral Cancer Risk: An Umbrella Review.

J Stomatol Oral Maxillofac Surg

January 2025

Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.

Background: Oral cancer is a common head and neck cancer malignancy that seriously affects patients' quality of life and increases the health care burden. Moreover, there is a lack of comprehensive reviews of previous research on factors associated with oral cancer. The aim of the current umbrella review was to provide a comprehensive and systematic summary of relevant studies, to grade the quality of evidence of relevant studies, and to provide guidance for the prevention of oral cancer.

View Article and Find Full Text PDF

Production of biologically active recombinant salmon calcitonin in Escherichia coli and fish cell line.

Arch Microbiol

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.

Salmon calcitonin is a small peptide hormone synthesised and released by a specialised gland called ultimobranchial gland in fish. This hormone has been used to treat osteoporosis for over 50 years. The aim of this study was to compare the efficacy of five repeats of salmon calcitonin (5sCT) produced in two different hosts (bacteria and fish cell line).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!