The present study was designed to evaluate the influence of long-term environmental human exposure to three heavy metals, lead (Pb), cadmium (Cd), and mercury (Hg), on the expression of detoxifying, xenobiotic metabolizing, and DNA repair genes in Mahd Ad-Dahab city. The study groups consisted of 40 healthy male residents (heavy metal-exposed) and 20 healthy male from Riyadh city, 700 km away, and served as control group. The heavy metal-exposed group with high exposure to Pb, Cd, or Hg was divided into three subgroups Pb-, Cd-, and Hg-exposed groups, respectively. The mRNA expression levels of detoxifying, NQO1, HO-1, GSTA1, MT-1, and HSP70, were significantly decreased in all heavy metal-exposed group as compared to control group. This was accompanied with a proportional decrease in the expression of xenobiotic metabolizing gene, cytochrome P4501A1. On the other hand, the DNA repair gene OGG1 and the 8-OHdG level were dramatically inhibited in Cd-exposed group only.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2013.06.014DOI Listing

Publication Analysis

Top Keywords

dna repair
12
heavy metal-exposed
12
human exposure
8
heavy metals
8
repair genes
8
xenobiotic metabolizing
8
healthy male
8
control group
8
metal-exposed group
8
heavy
5

Similar Publications

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Single-nucleotide-resolution genomic maps of O6-methylguanine from the glioblastoma drug temozolomide.

Nucleic Acids Res

January 2025

Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.

Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.

View Article and Find Full Text PDF

Background: Anti-angiogenic agents, such as nintedanib and ramucirumab, when combined with docetaxel, are subsequent treatment options in patients with non-small cell lung cancer (NSCLC) who have failed on first-line chemotherapy or immunochemotherapy. However, to date, there are no validated predictive biomarkers for efficacy of anti-angiogenic therapies in this setting. The aim of this study was to explore whether genetic or genomic markers, alone or combined with clinical covariates, could be used to predict overall survival (OS) in patients with NSCLC who are eligible for treatment with nintedanib plus docetaxel.

View Article and Find Full Text PDF

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

DNA viruses at once elicit and commandeer host pathways, including DNA repair pathways for virus replication. Despite encoding its own DNA polymerase and processivity factor, human cytomegalovirus (HCMV) recruits the cellular processivity factor, proliferating cell nuclear antigen (PCNA) and specialized host DNA polymerases involved in translesion synthesis (TLS) to replication compartments (RCs) where viral DNA (vDNA) is synthesized. While the recruitment of TLS polymerases is important for viral genome stability, the role of PCNA is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!