Spinocerebellar ataxia type 7 (SCA7) is an inherited dominant neurodegenerative disease caused by the expansion of a CAG repeat within the ATXN7 gene. Standard molecular diagnostic testing for SCA7 involves amplification of the region surrounding the CAG repeat via end-labeled PCR and subsequent capillary electrophoresis. In addition, multiplex methods exist that may be used to test for multiple polyglutamine spinocerebellar ataxias in a single assay. Herein, we used a SCA7 singleplex method to screen 111 individuals for whom the multiplex method detected a single normal allele. A total of six retested individuals (5.4%) were shown to have a pathogenic expansion at the ATXN7 locus. An additional triplet-primed PCR method was used to test the same cohort, and revealed no further disease-causing alleles. This study demonstrates the importance of using complementary methods to rule out apparent homoallelism during molecular testing for polyglutamine diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2013.05.009 | DOI Listing |
Neurol Genet
February 2025
University of Utah, Salt Lake City.
Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.
View Article and Find Full Text PDFNeurol Clin Pract
October 2024
Department of Neurology (AM, YB, SLP), David Geffen School of Medicine; Institute for Society and Genetics (AM); Interdepartmental Undergraduate Neuroscience Program (AM), UCLA; Division of General Internal Medicine (ACO), Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Neurology (YB), Cedars Sinai Health Center, Los Angeles, CA; and Division of General Internal Medicine and Health Services Research (AB), Department of Medicine, David Geffen School of Medicine, UCLA.
Background And Objectives: There are well-documented racial and ethnic disparities in access to neurologic care and disease-specific outcomes. Although contemporary clinical and neurogenetic understanding of Huntington disease (HD) is thanks to a decades-long study of a Venezuelan cohort, there are a limited number of studies that have evaluated racial and ethnic disparities in HD. The goal of this study was to evaluate disparities in time from symptom onset to time of diagnosis of HD.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India. Electronic address:
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!