Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crystallographic analysis of a mutated form of "loopful" GH19 chitinase from rye seeds a double mutant RSC-c, in which Glu67 and Trp72 are mutated to glutamine and alanine, respectively, (RSC-c-E67Q/W72A) in complex with chitin tetrasaccharide (GlcNAc)₄ revealed that the entire substrate-binding cleft was completely occupied with the sugar residues of two (GlcNAc)₄ molecules. One (GlcNAc)₄ molecule bound to subsites -4 to -1, while the other bound to subsites +1 to +4. Comparisons of the main chain conformation between liganded RSC-c-E67Q/W72A and unliganded wild type RSC-c suggested domain motion essential for catalysis. This is the first report on the complete subsite mapping of GH19 chitinase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2013.07.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!