Prion diseases, or transmissible spongiform encephalopathies (TSEs), are associated with the conformational conversion of the cellular prion protein, PrP(C), into a protease-resistant form, PrP(Sc). Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrP(C) has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrP(C)→PrP(Sc) conformational transition, and they suggest an approach to the treatment of prion diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766954 | PMC |
http://dx.doi.org/10.1016/j.celrep.2013.06.030 | DOI Listing |
Food Sci Anim Resour
January 2025
Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea.
Cell-based meat (CBM) technology is a highly promising alternative to traditional animal agriculture, with considerable advantages in terms of sustainability, animal welfare, and food security. Nonetheless, CBM's successful commercialization is dependent on efficiently dealing with several critical concerns, including ensuring biological, chemical, and nutritional safety as well as navigating the global regulatory framework. To ensure CBM's biological safety, detecting and mitigating any potential hazards introduced during the manufacturing process is crucial.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Neuroinflammation plays a dual role in prion diseases, contributing both to the clearance of misfolded scrapie-like prion protein and to neuropathology through chronic activation of inflammatory pathways. Key mechanisms, including M-CSF/CSF1R signaling, NLRP3 inflammasome activation, and the Galectin-3/TREM2 axis, etc., highlight the complexity of targeting neuroinflammation for therapeutic intervention.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration or death of neurons. The complexity of clinical symptoms and irreversibility of disease progression significantly affects individual lives, leading to premature mortality. The prevalence of neurodegenerative diseases keeps increasing, yet the specific pathogenic mechanisms remain incompletely understood and effective treatment strategies are lacking.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with a wide range of clinical phenotypes. Pathologically, it is characterized by neuronal inclusions containing misfolded, fibrillar alpha-synuclein (aSyn). Prion-like properties of aSyn contribute to the spread of aSyn pathology throughout the nervous system as the disease progresses.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
Background: Obesity is associated with an increased risk of aortic diseases and operative risks. Currently, there are no effective drugs available to prevent the occurrence and progression of aortic aneurysms or dissections. We investigated potential biomarkers and therapeutic targets using a multi-omics approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!