Background: Although inhaled glucocorticoids are the mainstays of asthma treatment, they are poorly effective at treating and preventing virus-induced asthma exacerbations. The major viruses precipitating asthma exacerbations are rhinoviruses.
Objective: We sought to evaluate whether rhinovirus infection interferes with the mechanisms of action of glucocorticoids.
Methods: Cultured primary human bronchial or transformed (A549) respiratory epithelial cells were infected with rhinovirus 16 (RV-16) before dexamethasone exposure. Glucocorticoid receptor (GR) α nuclear translocation, glucocorticoid response element (GRE) binding, and transactivation/transrepression functional readouts were evaluated by using immunocytochemistry, Western blotting, DNA binding assays, real-time quantitative PCR, coimmunoprecipitation, and ELISA techniques. Specific inhibitors of c-Jun N-terminal kinase (JNK) and of IκB kinase (IKK) were used to investigate the involvement of intracellular signaling pathways.
Results: RV-16 infection impaired dexamethasone-dependent (1) inhibition of IL-1β-induced CXCL8 release, (2) induction of mitogen-activated protein kinase phosphatase 1 gene expression, and (3) binding of GR to GREs in airway epithelial cells. This was associated with impaired GRα nuclear translocation, as assessed by means of both immunochemistry (54.0% ± 6.8% vs 24.7% ± 3.8% GR-positive nuclei after 10 nmol/L dexamethasone treatment in sham- or RV-16-infected cells, respectively; P < .01) and Western blotting. RV-16 infection induced nuclear factor κB activation and GRα phosphorylation, which were prevented by inhibitors of IKK2 and JNK, respectively. In rhinovirus-infected cells the combination of JNK and IKK2 inhibitors totally restored dexamethasone suppression of CXCL8 release, induction of mitogen-activated protein kinase phosphatase 1 gene expression, and GRα nuclear translocation.
Conclusion: RV-16 infection of human airway epithelium induces glucocorticoid resistance. Inhibition of RV-16-induced JNK and nuclear factor κB activation fully reversed rhinovirus impairment of both GRα nuclear translocation and the transactivation/transrepression activities of glucocorticoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2013.05.028 | DOI Listing |
H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei General Hospital, Shijiazhuang City, Hebei Province, P.R. China.
Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.
Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.
FASEB J
January 2025
Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.
Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.
Environ Toxicol
January 2025
Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
Sepsis remains the leading cause of multiple-organ injury due to endotoxemia. Astaxanthin (ASTA), widely used in marine aquaculture, has an extraordinary potential for antioxidant and anti-inflammatory activity. Purinergic receptor (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!