Pseudomonas fluorescens invoked a metabolic reconfiguration that resulted in enhanced production of pyruvate under the challenge of hydrogen peroxide (H₂O₂). Although this stress led to a sharp reduction in the activities of numerous tricarboxylic acid (TCA) cycle enzymes, there was a marked increase in the activities of catalase and various NADPH-generating enzymes to counter the oxidative burden. The upregulation of phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) coupled with the reduction of pyruvate dehydrogenase (PDH) in the H₂O₂-challenged cells appear to be important contributors to the elevated levels of pyruvate found in these bacteria. Increased pyruvate synthesis was evident in the presence of a variety of carbon sources including d-glucose. Intact cells rapidly consumed d-glucose with the concomitant formation of this monocarboxylic acid. At least a 12-fold increase in pyruvate production within 1h was observed in the stressed cells. These findings may be exploited in the development of technologies aimed at the conversion of carbohydrates into pyruvate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2013.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!