In this work we describe the conditional toxic effect of the expression of enzymes that cleave 5-bromo-4-chloro-3-indolyl (BCI) substrates and its use as a new counterselection principle useful for the generation of clean and unmarked mutations in the genomes of bacteria. The application of this principle was demonstrated in the thermophile Thermus thermophilus HB27 and in a mesophile for which currently no counterselection markers are available, Micrococcus luteus ATCC 27141. For T. thermophilus, the indigogenic substrate BCI-β-glucoside was used in combination with the T. thermophilus β-glucosidase gene (bgl). For M. luteus, a combination of BCI-β-galactoside and the E. coli lacZ gene was implemented. We observed a strong growth-inhibiting effect when the strains were grown on agar plates containing the appropriate BCI substrates, the inhibition being proportional to the substrate concentration and the level of bgl/lacZ expression. The growth inhibition apparently depends on intracellular BCI substrate cleavage and accumulation of toxic indoxyl precipitates. The bgl and lacZ genes were used as counterselection markers for the rapid generation of scar-less chromosomal deletions in T. thermophilus HB27 (both in a Δbgl and in a wild type background) and in M. luteus ATCC 27141. In addition to Thermus and Micrococcus, sensitivity to BCI substrate cleavage was observed for other Gram-negative and Gram-positive species belonging to various bacterial phyla, including representatives of the genera Staphylococcus, Bacillus, Corynebacterium, Rhodococcus, Paracoccus and Xanthomonas. Thus, the toxicity of indoxyl derivative accumulation upon BCI substrate cleavage can be used for selection purposes in a broad range of microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.syapm.2013.06.001 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.
View Article and Find Full Text PDFA remarkable demonstration of the flexibility of mammalian motor systems is primates' ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior, yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice.
View Article and Find Full Text PDFBiomater Sci
May 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China.
Sichuan Da Xue Xue Bao Yi Xue Ban
January 2024
( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Objective: To create a novel chitosan antibacterial hemostatic sponge (NCAHS) and to evaluate its material and biological properties.
Methods: Chitosan, a polysaccharide, was used as the sponge substrate and different proportions of sodium tripolyphosphate (STPP), glycerol, and phenol sulfonyl ethylamine were added to prepare the sponges through the freeze-drying method. The whole-blood coagulation index (BCI) was used as the screening criterion to determine the optimal concentrations of chitosan and the other additives and the hemostatic sponges were prepared accordingly.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!