An attempt to cast light into starch nanocrystals preparation and cross-linking.

Food Chem

Department of Food Science and Technology, University College of Agriculture & Natural Resources, University of Tehran, Karadj, Iran.

Published: December 2013

AI Article Synopsis

  • Potato starch was hydrolyzed using hydrochloric acid to create nanocrystals, with stronger acidity producing smaller crystals (48 nm).
  • X-ray diffraction indicated these particles were predominantly crystalline, while infrared spectroscopy revealed fewer free hydroxyl groups post cross-linking.
  • Differential scanning calorimetry showed two key temperature points related to structural changes, and cross-linking enhanced the stability of the nanocrystals' arrangement against heat-induced phase transitions.

Article Abstract

Potato starch was hydrolyzed with 2.2 or 3.7 M hydrochloric acid in order to obtain the nanocrystals which afterwards were chemically cross-linked with sodium hexametaphosphate. The stronger acidity resulted in smaller nanocrystals with mean size of 48 nm in a shorter time. X-ray diffraction confirmed the dominant crystalline nature of particles and Fourier transform infrared spectroscopy suggested the presence of lower number of free hydroxyl groups in nanocrystals after cross-linking. Starch nanocrystals showed two distinctive differential scaning colorimetry endotherms at 26 and 125 °C, attributed to destruction of nanocrystals lattice and moblizing of each nanocrystal's structure, respectively. Cross-linking resulted in a tenacious spatial arrangement of nanocrystals, strengthening the crystals lattice against phase transitions induced by heating. Scanning electron microscopy images confirmed the particle size measured for nanocrystals by light scattering. Atomic force microscopy topographic images suggested that starch nanocrystals were originated from small amylopectin blocklets in granular assembly of starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2013.04.071DOI Listing

Publication Analysis

Top Keywords

starch nanocrystals
12
nanocrystals
9
starch
5
attempt cast
4
cast light
4
light starch
4
nanocrystals preparation
4
preparation cross-linking
4
cross-linking potato
4
potato starch
4

Similar Publications

Response mechanism of major secondary metabolites of to selenium nanoparticles.

Front Plant Sci

December 2024

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.

Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.

View Article and Find Full Text PDF

With an increasing emphasis on environmental protection and sustainability, natural polymers like proteins and polysaccharides are being utilized more frequently in the development of biodegradable food packaging. However, the limited properties of these biopolymers have restricted their widespread applicability within the food industry. To address this issue, eugenol-loaded zein nanoparticles (ZE NPs) were incorporated into pea starch/soy protein-based films, and their effect on the physicochemical properties of these films were investigated.

View Article and Find Full Text PDF

This study investigates the synthesis of corn starch nanocrystals (SNCs) via sulfuric acid hydrolysis. Esterification of oleic acid (OA) with SNCs was carried out using Maghnite-H as a catalyst, a non-polluting, eco-friendly proton-exchanged montmorillonite-based green catalyst suitable for various chemical processes. Optimization of synthesis parameters, including reaction temperature, duration, and catalyst quantity, was conducted using response surface methodology (RSM) with a central composite design incorporating three factors and three levels.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!