To improve resolution of important minor proteins and eliminate time-consuming precipitation of major protein with associated analyte co-precipitation risk, a multi-dimension strategy is adopted in the 2D microchip-CE device to isolate major proteins on-chip, enrich minor proteins in capillary before their separation in CE for UV quantitation. A standard fluorescent protein mixture containing FITC-BSA, myoglobin and cytochrome as specific pI markers has prepared to demonstrate capability of the device to fractionate minor proteins by IEF. The results using a standard protein mixture with profile resembling infant milk formula show a complete isolation of high abundance proteins by a 2-min 1D IEF run. The subsequent t-ITP/CZE run by on-chip high voltage switching delivers a high stacking ratio, realizing 60 folds enrichment of isolated protein fractions. All five important functional proteins (LF, IgG, α-LA, β-LgA and β-LgB) known to fortify infant milk formula are isolated and determined using two consecutive t-ITP-CZE runs within a 18-min total assay time, a significant saving compared to several hours conventional pretreatment. For a 100g infant milk formula sample, working ranges of 20-8000mg, repeatability 3.8-5.3% and detection limits 2.3-10mg have been achieved to meet government regulations. Method reliability is established by 100% recoveries and agreeable results within expected ranges and labeled values. The capability of the device for field operation, rapid assay with quick results, label-free universal detection, simple operation by aqueous dissolution before injection, and the demanding matching in 2D separation based on isolated fractions at specified pI ranges, closely matched migration time and baseline-resolved peak shape makes the device a general tool to detect unknown proteins and determine known minor proteins in protein-rich samples with interfering constituents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.06.073DOI Listing

Publication Analysis

Top Keywords

infant milk
16
milk formula
16
minor proteins
16
proteins
9
functional proteins
8
protein mixture
8
capability device
8
device
5
multi-dimension microchip-capillary
4
microchip-capillary electrophoresis
4

Similar Publications

Objective: Breastfeeding is associated with improved health outcomes in infancy and throughout adulthood as breast milk encompasses diverse immune-active factors that affect the ontogeny of the immune system in breastfed (BF) infants. Nevertheless, the impact of infant feeding on the immune system is poorly understood, and a comprehensive understanding of immune system development in human infants is lacking. In this observational study, we addressed the effects of different infant feeding approaches on cell populations and parameters in the peripheral blood of infants to gain insight into the innate and adaptive arms of the immune system.

View Article and Find Full Text PDF

Background: Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp.

View Article and Find Full Text PDF

Maternal characteristics are associated with human milk anti-inflammatory proteins in two populations.

Sci Rep

December 2024

Department of Anthropology, University of South Florida, 4202 E. Fowler Ave. SOC107, Tampa, FL, 33620, USA.

Milk anti-inflammatory compounds are ubiquitous in milk but vary greatly within and between populations. The causes of this variation and how this variation impacts infant phenotype is not well-characterized. The goal of this study was to explain how maternal characteristics across two disparate populations impact the levels of TGF-β2 and IL-1ra in human milk.

View Article and Find Full Text PDF

The inclusion of artificial food additives such as vanillin in infant formula should be strictly monitored to mitigate potential negative impacts on the dietary habits and health of infants. This raises a necessity of an accurate inspection and prompt feedback of vanillin in infant foods. In this study, colorimetric and fluorescent dual-mode assays based on CuNS/FeO@MIPs were established to detect vanillin selectively and sensitively.

View Article and Find Full Text PDF

Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline.

Biosensors (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.

Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!