The mechanism of detergent solubilization of lipid bilayers.

Biophys J

Tel Aviv University, Sackler School of Medicine, Department of Physiology and Pharmacology, Ramat Aviv, Tel Aviv, Israel.

Published: July 2013

Multiple data are available on the self-assembly of mixtures of bilayer-forming amphiphiles, particularly phospholipids and micelle-forming amphiphiles, commonly denoted detergents. The structure of such mixed assemblies has been thoroughly investigated, described in phase diagrams, and theoretically rationalized in terms of the balance between the large spontaneous curvature of the curvophilic detergent and the curvophobic phospholipids. In this critical review, we discuss the mechanism of this process and try to explain the actual mechanism involved in solubilization. Interestingly, membrane solubilization by some detergents is relatively slow and the common attribute of these detergents is that their trans-bilayer movement, commonly denoted flip-flop, is very slow. Only detergents that can flip into the inner monolayer cause relatively rapid solubilization of detergent-saturated bilayers. This occurs via the following sequence of events: 1), relatively rapid penetration of detergent monomers into the outer monolayer; 2), trans-membrane equilibration of detergent monomers between the two monolayers; 3), saturation of the bilayer by detergents and consequent permeabilization of the membrane; and 4), transition of the whole bilayer to thread-like mixed micelles. When the detergent cannot flip to the inner monolayer, the outer monolayer becomes unstable due to mass imbalance between the monolayers and inclusion of the curvophilic detergent molecules in a flat surface. Consequently, the outer monolayer forms mixed micellar structures within the outer monolayer. Shedding of these micelles into the aqueous solution results in partial solubilization. The consequent leakage of detergent into the liposome results in trans-membrane equilibration of detergent and subsequent micellization through the rapid bilayer-saturation mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714928PMC
http://dx.doi.org/10.1016/j.bpj.2013.06.007DOI Listing

Publication Analysis

Top Keywords

outer monolayer
16
commonly denoted
8
curvophilic detergent
8
flip inner
8
inner monolayer
8
detergent monomers
8
trans-membrane equilibration
8
equilibration detergent
8
detergent
7
monolayer
6

Similar Publications

Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.

View Article and Find Full Text PDF

Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions.

Molecules

December 2024

Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.

The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.

View Article and Find Full Text PDF

Consortium of 2029 and 7247 Strains Shows In Vitro Bactericidal Effect on and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction.

Antibiotics (Basel)

November 2024

Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK.

(CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of 2029 (LC2029), 7247 (LS7247), and a mannan-rich prebiotic (Actigen).

View Article and Find Full Text PDF

Aqueous zinc-ion batteries promise low-cost and safe grid storage, but their practical application is hindered by poor Zn anode reversibility, primarily due to dendrite formation and water-induced side reactions in the electric double layer (EDL) structure. Herein, a monolayer of hydrophobic carbon dots (CDs) was dynamically constructed at the electrode/electrolyte interface. The trace-added hydrophobic CDs in the electrolyte reconstruct a hydrophobic and favorable EDL structure, suppressing water-induced side reactions in the inner Helmholtz layer and facilitating the desolvation of hydrated zinc ions at the outer Helmholtz layer.

View Article and Find Full Text PDF

Designing and discovering superior type-II band alignment are crucial for advancing optoelectronic device technologies. Here, we employ first-principles calculations to investigate the evolution of band edges in monolayer MoS, boron phosphide (BP), and MoS/BP heterostructures before and after their rolling into nanotubes. Our research results indicate that the intrinsic MoS/BP vertical heterostructures exhibit a type-II direct bandgap, but this feature is not robust under strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!